Defects and electrical properties in Bi-doped calcium manganite
نویسندگان
چکیده
منابع مشابه
Structural and electrical properties of In-doped vanadium oxide thin films prepared by spray pyrolysis
The In-doped vanadium pentoxide nanostructures with different doping levels including 0, 10, 20 and 30 at.% were prepared by the spray pyrolysis technique. The prepared thin films were characterized by the x-ray diffraction (XRD) and scanning electron microscopy (SEM). The XRD results revealed that the films were crystalline in tetragonal phase. Increasing the In-doping level made the structure...
متن کاملOrbital domain dynamics in a doped manganite
We explore a number of novel effects near the orbital-order phase transition in a half-doped manganite, Pr0.5Ca0.5MnO3. To probe the unusual short-range orbital order in this system, we have performed coherent soft x-ray resonant scattering measurements in a Bragg geometry to measure dynamics. Near the transition temperature, we observe a small fluctuating component in the scattered signal that...
متن کاملSol-Gel Synthesis, Characterization and Optical Properties of Bi 3+ - Doped CdO Sub-Micron Size Materials
Highly crystalline Bi3+-doped cadmium oxide (CdO) sub-micron structures were synthesized by calcination the obtained precursor from a sol-gel reaction. The reaction was carried out with cadmium nitrate (Cd(NO3)2.4H2O), bismuth nitrate (Bi(NO3)3.5H2O) and ethylene glycol (C2H6O2) reactan...
متن کاملVacancy defects in epitaxial InN: identification and electrical properties
We have used a low-energy positron beam to identify and quantify the dominant vacancy defects in InN layers grown on Al2O3 by molecular beam epitaxy. By applying both continuous and pulsed positron beams, we can show that In vacancies are formed during the crystal growth. Their concentration decreases from B5 10 to below 10 cm 3 with increasing layer thickness (120–800 nm). The In vacancy conce...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Materials Research Express
سال: 2020
ISSN: 2053-1591
DOI: 10.1088/2053-1591/ab625a